If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5z^2-21=0
a = 5; b = 0; c = -21;
Δ = b2-4ac
Δ = 02-4·5·(-21)
Δ = 420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{420}=\sqrt{4*105}=\sqrt{4}*\sqrt{105}=2\sqrt{105}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{105}}{2*5}=\frac{0-2\sqrt{105}}{10} =-\frac{2\sqrt{105}}{10} =-\frac{\sqrt{105}}{5} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{105}}{2*5}=\frac{0+2\sqrt{105}}{10} =\frac{2\sqrt{105}}{10} =\frac{\sqrt{105}}{5} $
| 3(42+6)=4(2z+5) | | 4x+5–x–7=10 | | 2(3x+4)=6(4x-1) | | 4x^-7=9 | | 19+x=2/7x+4 | | 2/4=6x | | 5a-5=90 | | 4(b-3)=4 | | 12x+x^2=15x^2 | | 16j=-4 | | 9x=6(x+2)=6 | | 187=5x+4(-5x+13) | | -x/2=4/3 | | 34=5x+2(x=2) | | x²+6=20 | | 2^-6x=8^4-3x | | X-15=10-4x | | a=6-4a-3-3a | | 39+3w=78 | | 27y3/21=7/18y2 | | 8w-3w=45 | | 3x-(4+2x)=6 | | b^2-3b+0=0 | | 15+s=27 | | 3x+9/4=6 | | 4^3x-1=20 | | 5x²=20 | | 8x=18+17 | | 7x=18+17 | | -16d+9d=7 | | 5x=18+17 | | x+5/7=x+8/2 |